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INTRODUCTION

Current trends in computer and communications technology are leading

to the development of many highly integrated systems in the domains of

comuunications, transportation, manufacturing, etc. Most of these

systems can be represented as large networks of nodes and arcs where

nodes denote people, destinations, or machines and arcs denote

communication lines, transportation routes, or a variety of activities.

Because these systems are highly integrated, it is not unusual for there

to be hundreds or thousands of nodes and arcs. Networks of this size and

level of connectivity are very complex systems.

Complexity is further increased by the dynamic nature of these

networks. The states of the nodes and arcs (i.e., levels, flows, etc.)

usually evolve in time and are not amenable to instantaneous control.

Further, the demands placed upon the networks are often time-varying,

with occurrences of peak demands not always being predictable.

This program of research is concerned with the problem solving

behavior of the human whose role is network controller or operator. The

job of the network controller is to manage the assets of the network

(i.e., nodes and arcs) so as to maximize network efficiency. Further,

during peak demand periods, the controller may have to implement control

procedures such as load shedding and priority scheduling to assure that

overloads do not degrade network performance.

For many aspects of this job, the network controller has computer

aids or, in fact, may simply have to monitor an automated system which

performs many of the above functions. However, system failures or

unusual environmental demands can require that the human intervene and

manually control the network. The human's abilities to solve these types
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of problem are not well understood. In fact, human problem solving in

complex dynamic environments is an area where few research results are

available. This area is the topic of the research program whose progress

is reported here.

PROGRESS

This section briefly summarizes progress during the first three

years of this four-year program of research. Considerably more detail

about the most recent results can be found in the papers included in the

Appendix.

Most of the first year was devoted to developing an experimental

scenario and evaluating the impact of its parameters on human problem

solving performance [Henneman and Rouse, 1984a]. Communications networks

were chosen as the experimental context. After reviewing a variety of

documentation on human control tasks in both commercial and military

co nunications networks, an experimental scenario called MABEL was

designed and programmed. MABEL requires subjects to monitor a

large-scale automated communications network via a hierarchical multi-

page CRT display. Much as discussed in the Introduction, subjects have

to manage network assets and, in the event of a failure, intervene to

diagnose the failure, compensate for its impact, and restore normal

operation.

For the first formal experiment with MABEL, the effects of three

independent variables were studied: 1) number of nodes per display, 2)

number of levels in the display hierarchy, and 3) failure rate per node.

Twelve subjects each participated in six experimental sessions. Overall,

this initial experiment with MABEL produced two results of particular

interest. First, the effects of number of levels in the hierarchy were

-
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often very strong, producing up to a five-fold degradation of performance

for a modest change from two to three levels. The second result of note

is that rather different strategies seemed best for different

combinations of independent variables. This leads to the question of

whether humans can be trained to adapt appropriately or if some form of

aided adaptation is needed.

The second year of this research involved two efforts. One effort

concerned the development of a rule-based model of human problem solving

in the MABEL environment [Viteri 19841. One general impression that

emerged from the experiment and the modeling efforts was that MABEL

lacked the contextual richness necessary to provide the type of problem

solving environment required for this research. Perhaps the best

indication of this is the simplicity of Viteri's model even though it

compares fairly well with subjects' behavior.

This observation led to a decision to enhance substantially the

contextual aspects of MABEL. The second formal experiment [Henneman and

Rouse 1984b, 1985, Henneman 19851 used a contextually augmented version

of MABEL called CAIN (Contextually Augmented Integrated Network). The

scenario contained cues and associative links (e.g., non-varyin3

geographic node names, recurring failures, and non-uniform loading) to

produce a higher fidelity simulation. Cluster size was kept constant at

16 so that subjects could learn and recall context-dependent aspects of

the system. Experimental variables were numbe'r of connections between

nodes (high,low) and number of levels (2,3). Eight subjects each

participated in thirteen experimental sessions. Results supported those

from Experiment One: increasing number of levels degraded performance,

as did decreasing the connectivity between nodes.
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Efforts in the third year of this research have been directed

towards realizing a major objective of the second experiment, namely, to

investigete the nature of complexity in a large scale system [Henneman

and Rouse 1985, Henneman 1985]. Two dimensions (and associated measures)

of complexity were proposed: complexity due to the structure of the

system and complexity due to the strategy of the person trying to control

the system. Complexity was considered to be a dynamic property of a

human-machine system. Complexity is time-dependent and

multi-dimensional; thus, time series analysis was used to develop

transfer functions relating the two complexity measures to average time

to failure diagnosis. Results indicated that the distinction between

structural complexity and strategic complexity is appropriate.

Results also emphasized the different implications that complexity

may have for normal system operation and human failure diagnosis

performance. A very complex system may function quite well under normal

operating conditions. The system is able to absorb the effects of

failures to a certain extent while maintaining an adequate level of

performance. However, when the problem becomes so critical that the

human monitor must intervene and find the problem, the task of failure

diagnosis may be very difficult. In summary, although certain system

design characteristics may help to avoid the short term effects of

failures, these same characteristics may have the dual effect of making

the human supervisory controller's task more difficult. These results

are presented in the paper included in the Appendix [Henneman and Rouse

1985].

Other efforts in the third year of this research have been directed

towards the conceptual development of a sophisticated model-based

4



performance aid for humans monitoring and controlling CAIN. The proposed

rule-based model is described in a paper in the Appendix [Henneman

1985b]. The model is characterized by three stages of problem solving

(recognition/classification, planning, and execution) that are

prioritized according to the model's knowledge about the task and about

the system (e.g., contextual relationships among components).

FUTURE WORK

On-line implementation of the model proposed in the paper in the

Appendix has just started. Future plans include the experimental

evaluation of the model as an on-line performance aid. The proposed

experiment should compare the task performance of two groups of subjects,

one of which performs without the aid and the other with the aid. An

interesting side issue to explore involves the representation and use of

the contextual information included in the experimental scenario.
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A MODEL OF HUMAN PERFORMANCE
IN A

LARGE SCALE DYNAMIC SYSTEM

Richard L. Senneman

Center for Man-Machine Systems Research
School of Industrial and Systems Engineering

Georgia Institute of Technology
Atlanta, GA 30322

AbEal=
A model of human performance in monitor- Given this understanding of human per-

ing and controlling complex engineering sys- formance in this task, it is now possible to
tens is considered from the perspective of postulate a model of human problem solving in
implementing the model as an on-line perfor- the CAIN environment. Thoughts presented in
mance aid. Results from the literature are this paper are directed towards the develop-
discussed in the context of CAIN, a simulated ment of such a model. First, some previous
large scale system that has been used to related modeling efforts are reviewed-
study human supervisory control performance Second the CAIN environment is briefly
11,21. A rule-based model of human perfor- described. Finally, the problem solving
mance in CAIN is proposed and a methodology model is presented and discussed
for evaluation is suggested.

Tntrpguet ion akL~

Recent trends in automation have facili- The model developed in this paper is an
tated the creation of large, complex extension of a conceptual model of human
engineering systems. Due to the capabilities problem solving proposed by Rouse 151. Rouse
of computer technology to control a large has suggested that problem solving takes
number of interconnected components, the nor- place on three levels: 1) recognition and
mal operation of these systems is typically classification, 2) planning. and 3) execution
left to an automatic controller. During and monitoring Thus, when a problem situa-
unforeseen events (such as system failures) tion develops, the first task is to detect
that cannot be handled by the computer, how- that the problem exists and to categorize it
ever, a human controller must take corrective (recognition and classification). An
action. As many have noted [3], this increase approach or plan to solving the problem must
in automation is fundamentally changing ways then be developed (planning), and finally,
in which people interact with large systems. the plan must be implemented (execution and
The human operator no longer is in charge of monitoring). The model is further character-
the routine, continuous control of the sys- ized by its ability to make either a state-
tem. Rather, the operator is mostly con- or a structure-oriented response, depending
cerned with the unexpected, the unusual, and on both the system state and the human's
the non-routine aspects of system control. level of expertise. The model assumes that
Requisite human skills for system control are humans have a preference for pattern-
shifting from psychomotor to problem solving recognition solutions to problems -- that is,
141. humans prefer to make context-specific state

oriented responses to situations. Moreover,Recent research activity has focused on the model operates heterarchically at all
human supervisory control and problem solving three problem solving levels almost simul-
in complex engineering environments [31, taneously, with situations constantly being
although a majority of this work has been re-evaluated relative to their state- or
restricted to the process control domain, structure-oriented status.
Denneman and Rouse (1,2] discuss human per-
formance in monitoring and controlling a The model as presented by Rouse (51 is
large scale dynamic network (such as a con- explicitly a conceptual realization/ combina-
Munication network). These systems can be tion of other more restricted problem solving
represented as discrete queueing networks. models. Knaeuper and Rouse (61 attempted to
Nenneman and Rouse 11,23 have conducted a implement an operational model of this con-
series of experiments that empirically ceptual framework in a computer simulated
assessed the effects of system features (such process plant environment called PLANT 17].
as number of levels and display size) on They developed a rule-based model called KARL
human performance via two simulated large (Knowledgeable Application of Rule-based
scale systems called MABEL and CAIN. Other Logic) that controlled the computer simulated
efforts have been directed towards developing process plant. KARL consists of a set of
and evaluating measures of large scale system production rules that comprise the knowledge
complexity. Resuits to this point have led base and a control structure that accesses
to a good empirical understanding of the that knowledge base. KARL's structure is
relationship between the structure of the
system and human performance.



defined by the three levels of problem solv- subjects supervised an essentially context-
ing described above and also four major tasks free representation of a large scale network
that are associated with human performance in called MABEL (Monitoring, Accessing, Brows-
a process control environment (i.e., transi- ing, and Evaluating Limits). trying to optim-
tion, steady-state tuning, failure detection ize such system parameters as number of cus-
and diagnosis, and failure compensation). tomers served and customer processing time
Thus, changes were made to the originally while trying to diagnose system failures. In
proposed model in order to accomodate the second experiment, the MABEL scenario was
specific characteristics of process plants. substantially augmented to produce a higher
In addition, the model does not explicitly fidelity system. This new scenario is called
incorporate a mechanism to distinguish CAIN (Contextually Augmented Integrated Net-
between state- and structure-oriented work). The remainder of this section pro-
responses. vides a brief overview of CAIN. The reader

is referred to Henneman and Rouse [2] for
KARL's performance in controlling PLANT more detail.

was compared with that of human subjects.
Overall, the comparison was favorable in Overview 2L CAIN
terms of such performance measures as plant
output and plant stability. An action-by- CAIN is programmed in Pascal on a VAX
action comparison between KARL and subjects 11/780 computer and operates in real time.
revealed, however, two major systematic It is structured as a large hierarchical net-
differences: first, subjects tended to be work that can range in size from hundreds to
more conservative in terms of selecting lev- thousands of nodes. Customers travel through
els of system input and output, and second, the system from a randomly selected source
KARL tended to adjust input and output more node to a random destination. Subjects moni-
frequently than subjects- These findings tor this system activity via a CRT display.
were probably a result of differences between When they detect a problem in the system
subjects' underlying performance goals and (possibly due to a failure), subjects issue
KARL'S goals. KARL possessed mechanisms that an appropriate command through a keyboard to
always tried to maximize plant production, a correct and compensate for the abnormal
strategy which it, unlike subjects, pursued situation. The overall objectives of the
inflexibly. Consequently, KARL tended to be operator are: 1) to maximize the number of
more extreme in terms of accurately following customers served, and 2) to minimize customer
procedures. sojourn time.

Knaeuper and Morris [8] attempted to use Because of the network size, it is not
KARL as an on-line aid to subjects control- possible to display information about all
ling PLANT. In light of the difficulties nodes at one time; Thus, nodes are grouped
PLANT subjects had in accurately assessing into relatively small networks called clus-
situations and following appropriate pro- ters. Human operators are restricted to
cedures [9] and since KARL was good at these viewing only one cluster at a time on the
activities, the use of KARL as an on-line aid CAIN display. Clusters are grouped into
was a logical extension. KARL provided three hierarchic levels.
types of aid: 1) situation assessment (i.e.,
identification of the appropriate procedure), Effects at nd@ failuires
2) guidance in following procedures, and 3)
performance feedback. Comparing performance Under normal circumstances, CAIN
of subjects who received help from KARL to operates automatically without human inter-
those who performed unaided, the aided sub- vention. Since the system cannot automati-
jects maintained a higher level of plant sta- cally diagnose and repair failures, the human
bility, scored higher on a paper-and-pencil must monitor the system looking for evidence
test of system knowledge, and were more suc- of failed components. Node failures can
cessful in diagnosing an unfamiliar system occur in two ways. The first is a randomly
failure. occurring failure mode caused by malfunction-

ing equipment. The second type, capacity
As Knaeuper and Morris [81 indicate, the failure, can be caused by the randomly occur-

interpretation of the results is not ring failures. Each node has a maximum
straightforward. In fact, they conclude that number of customers that it can store at a
although this experiment successfully demon- time. If this limit is exceeded, the node
strated the viability of the use of a model- fails. Thus, if a node fails randomly and a
based performance aid, issues related to on- customer needs to visit that node, it will be
line training and aiding are far from retained at its previous node. This reten-
resolved. The framework outlined in this tion will cause the previous node to stop
paper is an attempt to further investigate processinq customers, which can lead to a
the use of a model-based performance aid in a capacity failure. In this way, if the opera-
different task domain. The next section, tor does not locate failures quickly. the
therefore, describes a simulated large scale problems will propagate through the system.
system used to study human failure diagnosis
performance. Addition gL ontext

CAMN: A 2iau1AW LAZe ScaLeM system Although the physical hierarchical
structure of MABEL was preserved, the addi-

Two previous experiments [1,21 have con- tion of contextual information to CAIN
sidered human performance in the monitoring required changing both interface and system
and control of a computer simulated large characteristics. In CAIN, for example, each
scale system. In the first experiment, node in the system is identified by a



specific geoqraphic location (for example, be clear-cut choices among alternatives while
nodes in the highest level of the system are in other cases there will be indifference.
labelled Seattle, Chicago, Miami, etc.) In It may be argued that the essence of good
addition, the contextual fidelity was performance in this task is the subject's
enhanced through the addition of associative ability to prioritize sub-tasks that are
links (i.e., memory aids) and cues (i.e., present concurrently. An important goal of
clues to the location of system problems), this model, therefore, is to represent sub-
Associative links were formed Lby requiring task prioritization.
subjects to reference nodes via their geo-
graphic label Cues were formed by the In summary, underlying the development
introduction of context-dependent events, of this model is the demonstration of how a
such as recurring failures and non-uniform general representation of human problem solv-
loading ing [5] can be adapted to model human perfor-

mance in a complex large scale environment.
A Model 2f HumAD Performance in CAIN More importantly. this model is to be used as

an on-line performance aid. Unlike the work
Building from the work of Rouse, Knae- of Knaeuper and Morris [81 in which a perfor-

uper and Morris [5,6,8], a model is proposed mance model was adapted 2= Wm to serve as
in this section with the intent of supporting an aid, the development of this model is
human performance in monitoring and control- motivated by the desire to use it as an on-
ling CAIN. First, some overall requirements line aid. In order to achieve these underly-
of the model are specified. Second, a ing goals, the model should flexibly support
specific model is proposed, and finally, the severai performance strategies, explicitly
way in which the model can be used as a per- represent contextual knowledge, and contain a
formance aid will be discussed, mechanism to prioritize sub-tasks.

Qye.raJ reauirements A model

Before the model is proposed, several A model that meets these requirements is
requirements that the model should meet are shown in Figure 1. As in Knaeuper and
specified in this section. For example, in Rouse's KARL [6], the model proposed here
order to function as a performance aid. the will be represented as a set of if-then rules
model must be able to represent several dif- organized into a hierarchical structure. The
ferent performance strategies. A result from model contains two levels of activities. The
Henneman and Rouse (2] indicated that sub- lowest level of the model consists of the
jects discovered failures in CAIN using three three stages of problem solving discussed by
modes of failure diagnosis: symptomatic, Rouse [5]: recognition/classification, plan-
topographic, and serendipitous. Subjects ning, and execution. Because multiple sub-
using a topographic strategy trace failure tasks may concurrently exist, the model can
symptoms from higher system levels to lower be operating in any of these stages. Thus,
level causes. Subjects using a symptomatic the highest level of the model contains a
strategy make a direct mapping from their mechanism to prioritize the performance of
system structure knowledge to the failed com- sub-tasks in the three lower level stages.
ponent. A symptomatic diagnosis relies, The remaining model component represents the
therefore, on the subject's contextual
knowledge of the system. Finally, subjects
may also identify failures accidentally or
serendipitously. When using this diagnosis
mode, subjects locate failures while browsing
through the system or while tracing the cause
of a different failure.

These failure diagnosis modes are depen-
dent upon an individual subject's understand-
ing ot how the system operates as well as the
subject's knowledge of the contextual rela- SYSTEM
tionship between system components. There- KNOWLEDG
fore, the model should incorporate an expli-
cit representation of both contextual PRIORITIZATION
knowledge and task knowledge. Moreover, the
model should allow this contextual knowledge
to be augmented over time as subjects gain
performance expertise.

Finally, the model should represent the R NIO PAIG EXCTNway in which subjects prioritize sub-tasks in
monitoring and controlling the network. Mul- CLASSIFICATION
tiple system failures and the dynamic nature
of the system may cause the operator to have
several sub-tasks to perform at any one time.
At one instant, for example, the system may
have multiple failure symptoms on the Figure 1. A model of human performance in CAIN
display, heavy customer demands in one part
of the system, and a failed node. The rela-
tive importance of each of these sub-tasks
can vary with time. In some cases there will



system (or contextual) knowledge needed to System knowledge (analogous to
perform the task The following paragraphs Anderson's declarative knowledge 112]) encom-
will discuss each part of the model in more passes the knowledge of contextual relation-
detail. ships among system components. For example,

system knowledge might contain a fact like
Recognition/classification takes place "Lvanston is a second level city that is

when the subject identifies that an event has associated with Chicago.* In addition to this
occurred or a situation exists. Examples static knowledge of system structure, system
include node failure, failure symptoms, knowledge also encompasses facts that are
abnormal customer demands, and normal situa- related to the system dynamics. For example,
tions. the names of nodes with recurring problems or

regions with high customer loading are likely
Once an event has been recognized and to be remembered by subjects. In this model,

classified, the subject must develop an these facts will be stored as system
approach to improve the situation. A differ- knowledge. This type of knowledge should
ence exists between planning at this level only be accessed by the
and the prioritization or the coordination of recognition/classification and prioritization
low level plans that occurs at the highest model components. Planning and execution are
model level. Plans at this low level are performed independently of contextual
best compared to simple scripts [10] or short knowledge. Methods of representing this task
sequences of actions. To illustrate, con- system knowledge are currently being investi-
sider a situation in which a subject observes gated [13], along with ways in which the sys-
an increasing queue size in a node. This tem knowledge can be augmented as subjects
event suggests that a failure exists in a gain more expertise.
lower system level; a suitable plan of action
would be to 1) display the lower level clus- T model As An aid
ter, and 2) test the new cluster for failed
components. This section considers each of the model

components and the roles they could play in
After a suitable course of action is providing performance assistance.

identified, the plan must be implemented. An Recognition/classification, for example. will
analysis of the timing of subject's commands indicate "trouble spots*. i.e., regions with
1I] indicated that these command sequences a greater liklihood of having a failure or
are frequently issued in rapid succession, heavy loading. When scanning a display, a
suggesting that the plans are executed subject can easily miss a salient cue. The
automatically with little conscious atten- model should be helpful in terms of indicat-
tion. In the execution phase of this model ing those cues that have the greatest likeli-
these command sequences are issued. The hood of reflecting a failure.
assumption is made that once the sequence is
started, it cannot be interrupted. The planning module can assist by tel-

ling operators what to do once they have
These three phases - recognition/ clas- recognized a situation. This information

sification, planning and execution - form would be most useful for novice operators.
the basis of activities implemented by the Nevertheless, for some situations that are
model. In general, the performance of each seen only infrequently, this advice would be
sub-task will progress sequentially through useful for all operators. This lack of
each of the three stages. Nevertheless, emphasis on procedural information is
since multiple sub-tasks may exist, it is markedly different from the advice given by
likely that this sequential process may be KARL to PLANT subjects [8]. A large part of
interrupted by a new sub-task of greater the advice that KARL provided was procedural
importance. As mentioned previously, the key information.
to good performance in this task is the abil-
ity to prioritize sub-tasks. Thus, perhaps Prooably the most important aid that the
the most important feature of this model is model can offer is in prioritizing sub-tasks.
the way in which activities are prioritized. Certain situations are more critical than
Prioritization takes place in the highest others; the model should be useful in identi-
model level. fying those sub-tasks that are most impor-

tant.
Two other components are included in the

model, one of which is implicitly embedded Other ways in which the aid should be
within other model components, the other of used is by giving performance feedback and
which is explicitly represented. These two contextual information. As in the KARL-PLANT
parts represent the knowledge necessary to experiment 18], subjects should receive feed-
perform the task: task knowledge and system back 'relative to the success of their
knowledge, actions. In addition, since operators* sys-

tem knowledge is inevitably at various levels
Task knowledge (analogous to Anderson's of completeness, the model should assist in

procedural knowledge (12]) encompasses the augmenting the deficiencies.
knowledge of how to do things, for example,
how to diagnose a failed component. This The biggest problem in using a model
knowledge will be embedded in the productions like the one proposed in this paper as an aid
(or if-then rules) associated with the model is the development of an effective interface
components (i.e., prioritization, between the model and the operator. Since
recognition/classification, and planning). the system state is constantly changing, the

information provided by the aid will also be
constantly changing. Advice that is relevant



at one time may be erroneous after a few (8) A. Knaeuper and N.M. Morris. "A model-
moments. At this time, it is unclear how to based approach for online aiding and
control the display of this information, training in process control," in
Moreover, since the current CAIN display is P Qt th& Li9 TEF Lnterna-
already very crowded with verbal information, tional Conferene Qo S . an. and
the addition of advice from a model-based aid Cybernetic , Halifax. NS, pp 173-177,
may only serve to degrade performance by 1984
overloading the human's information process-
ing capbilities. Perhaps synthesized voice (9) N.M. Morris and W.B. Rouse. "The effect
output would be a suitable means of present- of type of knowledge on human problem
ing this advice, solving in a process control task," I =

Transactions go S±MAi. It= aad Cyb-
ntics, vol. 15, no 6,
November/December 1985

On-line implementation of the model pro-
posed in this paper has just started- Future (10) R.C Schank and R.P. Abelson, scrLits
plans include the experimental evaluation of Plans, Goals. a£W Understading, Hills-
the model as an on-line performance aid. The dale, NJs Lawrence Erlbaum, 1977.
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ABSTRACT

The complexity of monitoring and controlling a large scale system,
such as a communication network, is considered. Relevant literature is
reviewed, with emphasis on both behavioral and non-behavioral approaches
to measuring complexity. A simulated large scale network is described
that is used in an experiment to assess the effect of network redundancy
and number of system levels on human fault diagnosis performance.
Experimental data is also used to evaluate two time-varying measures of
task complexity (using ANOVA and time-series analysis). The first
measure is dependent upon the structure of the system; the second measure
is dependent on the strategy of the person controlling the system.
Results suggest that this distinction is appropriate. In addition,
results emphasize the different implications that complexity can have for
normal system operation and human failure diagnosis performance.
Although system design characteristics such as redundancy may help to
avoid the short term effects of failures, these same characteristics may
have the dual effect of making the human supervisory controller's task
more difficult.



INTRODUCTION

Recent trends toward increased automation in large scale engineering

systems are causing a parallel shift in the role that humans play in

these systems. People are increasingly being required to interact with

systems only during unforeseen events, such as when a part of the system

fails. During these times, proper system functioning is dependent upon

the human's decision making and problem solving skills. These human

abilities can be enhanced or degraded by a parallel shift in display

capabilities: not only is the computer changing the level of automation

in systems, but it is fundamentally changing the nature of communication

between the human and the system. These changes have the potential of

producing tasks of possibly enormous complexity. In light of this

potential, it is of basic importance to consider human abilities in

monitoring and controlling these complex environments.

Research activity over the past several years has considered the

fault diagnosis abilities of humans in a supervisory control context

[l], although much of this work has been confined to the process control

domain. Of additional importance is the consideration of human

performance in monitoring and controlling large scale hierarchical

networks, such as communication or command and control systems. These

systems typically can be represented as large queueing networks, with the

extent of control increasing with successive hierarchic levels. Due to

the enormous size of the system, not all relevant information can be

displayed to the human operator at one time; thus, multi-page computer

generated displays are frequently used. Human limitations in dealing

with systems of this type have not been investigated to any great extent

[21.
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The work reported in this paper is an effort to relate aspects of

system design to the complexity of the human operator's monitoring and

control task. Emphasis is placed In the following section, therefore, on

identifying a variety of perspectives on complexity. A simulated large

scale system (an extension of the one reported in Henneman and Rouse [2])

is then described, which is used in an experiment to evaluate two dynamic

measures of task complexity that are based on the structure of the system

and the strategy of the human operator.

BACKGROUND

The purpose of this section is to review discussions and

investigations of complexity that have taken place within a number of

disciplines. Computer scientists, for example, are often interested in

the computational complexity of a particular algorithm. Computer

scientists also often measure the complexity of a piece of software.

General systems scientists postulate theories about the inherent

complexity of large scale systems, while theoretical biologists discuss

the complexity of biological systems. Psychologists relate the

complexity of symbolic or spatial patterns to human behavior.

Han-machine systems engineers are interested in system complexity as it

relates to human problem solving and system control. In this section,

the issue of complexity is addressed from these and several other

perspectives. For organizational purposes, non-behavioral perspectives

are considered first, followed by behavioral complexity

perspectives.
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Non-behavioral perspectives

Computational complexity. An issue that has interested computer

scientists, operations researchers and others is that of the relative

computational difficulty of computable functions (i.e., why is one

function more difficult to compute than another?). In general,

computational, combinatorial, or algorithmic complexity is defined as the

length of time or amount of space (memory requirements) required to

compute a certain function on a certain type of machine [3,4].

Algorithms are classified in terms of the amount of time (e.g.,

polynomial or exponential) and/or memory they take to be solved on a

computer [5,6,71. Examples include an analysis of a graph theory

algorithm for cluster analysis (81, a consideration of the complexity of

mathematical models in manipulator control systems [91, some observations

regarding the complexity of matrix factorization [101, and an examination

of the time required to solve problems in a system of communicating

sequential processes [11].

As Rouse and Rouse [12] have noted, a relatively large amount of

work has been done to analyze the complexity of automatic fault detection

algorithms. Fujiwara and Kinoshita [13], for example, analyze several

problems of instantaneous and sequential fault diagnosis of systems.

They show that these algorithms are polynomially complete (i.e., they can

be solved in polynomial time if and only if the traveling salesman

problem, knapsack problem, etc., can be solved in polynomial time.)

Priester and Clary [14], using results from system identification

theory, develop measures of failure test complexity. Rouse and Rouse
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[12] try to relate human performance to an optimal solution of a fault

finding task.

Software complexity. Somewhat related to the measurement of

computational complexity is the measurement of software complexity.

While computational complexity estimates the time and memory requirements

of implementing a particular algorithm on a computer, software complexity

estimates such quantities as programming time and program length. By

controlling the software complexity, production costs should reduce while

overall software quality should increase [15].

Halstead [16] has proposed a theory of software science that is

based on a measure which counts the number of operators and operands in a

program in order to estimate program length, volume, program level,

language level, programming effort, and programming time. Despite a high

degree of predictive power, criticism has been leveled at the approach

from a theoretical perspective 117,18]. Other approaches include a

graph-theory based measure of McCabe [19], an information theory based

measure [15], and a control structure/flow measure [15]. Davis [20]

notes that none of these approaches are based on a satisfactory model of

programmer cognitive processes, and thus, proposes and evaluates measures

based on "chunks", or related program concepts that can be understood by

programmers as a single cognitive unit. Chaudhary and Sahasrabuddhe

[21] conclude on the basis of experimental results that complexity not

only involves the control structure of a program but also the executional

difficulty of the program.

Complexity of physical systems. Besides the complexity of

mathematical algorithms or computer software, complexity has also been

discussed in the context of a physical system. Typically these
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investigations are of a general, theoretical nature, although some of the

discussions are applicable to the consideration of human performance in

large scale systems. In the following paragraphs, the general systems

approach to understanding complexity is considered.

Weaver [22] has distinguished between problems of simplicity,

disorganized complexity, and organized complexity. Problems of

simplicity include the largely two variable problems considered by the

physical sciences before 1900. Problems of disorganized complexity

contain a very large number of variables, each of which may possess an

erratic or unknown behavior. By applying techniques of probability

theory or statistical mechanics, the behavior of the system as a whole

may be analyzed and characterized by its average tendencies. An

important range of problems lies between the extremes of simplicity and

disorganized complexity. These problems may contain a relatively large

number of variables; however, they also exhibit a high degree of

organization. Problems of organized complexity are ones in which "a

sizeable number of factors ... are interrelated into an organic whole"

[22]. In general, these problems are of interest to the system

scientist. Systems of all types - biological, social, economic,

ecological, or physical - can be characterized as highly interrelated

subsets of variables.

Redundancy and complexity. A recurrent theme throughout the

literature is the identification of system size and degree of

interconnectedness as indices or attributes of system complexity.

xsample domains include general systems [23,24], architectural design

[25], and political systems [26).
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A highly connected system is complex, however, only in the sense

that it is difficult for a person to understand the causal net of

relations among system components and variables. Thus, a high level of

connectivity (or redundancy) should lead to increased difficulty in

solving problems related to system operation (i.e.,failure detection,

resource management, etc.). Waller [271, for example, proposes that

large, highly connected systems are complex and difficult for humans to

understand because of inherent human information processing limitations.

With respect to normal system control, however, the concept of

redundancy has quite different implications. Mackinnon and Wearing

[28] investigated a complex decision making environment in which the

number of elements in the system, the degree and pattern of

interconnections in the system, and the presence/lack of uncertainties in

the system were varied. The results indicated that the complex (or

highly interconnected) systems did not always lead to poorer levels of

performance. In these cases, therefore, a high level of redundancy led

to improved system performance. The authors claim that this effect is

due to the insensitivity of highly redundant systems to faults and

mistakes made by subjects.

Thus, at least two different interpretations of the relationship

between redundancy and system complexity exist. The first

interpretation, generally espoused by social scientists and general

systems theorists, is related to the difficulty of understanding the

system. When a failure occurs it may be 4ifficult to locate its cause

due to the presence of multiple paths through the system. On the other

hand, when a system is highly redundant. its ability to carry on normal

operation is greatly increased - the redundancy serves to stabilize the
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network. This interpretation is largely held by biologists and

engineers. Thus, the level of interconnectedness in a system affects the

level of two types of complexity: problem solving complexity and system

control complexity.

These two interpretations are consistent with standard results from

reliability theory [29,30,31]. As the number of alternate paths (or

components) increases in a system, the reliability increases, as

expressed by the mean time between failures. However, data has shown

that as the redundancy (and hence, the reliability) increases, the

maintainability of the system decreases, i.e., the mean time to repair

increases [30]. Thus, more complex (or redundant) systems lead to longer

repair times. The availability of the system (or the probability that

the system is operating satisfactorily at any point in time) is shown by

von Alven [31] to be a function of both reliability and maintainability;

thus, it too is a function of system redundancy.

Subjective nature of complexity. A final theme within the

complexity literature is that of the relative or subjective nature of

complexity. Ashby (32] illustrates this concept by considering a sheep's

brain. While the internal mechanisms of the brain are very complex to a

neurophysiologist, a butcher only has to distinguish a sheep's brain from

about 30 other cuts of meat (or about 5 bits). Several other authors

also equate complexity with descriptions of objects, rather than with

intrinsic properties of objects [33,34,35]. This perspective leads quite

naturally to the discussion of behavioral cowplexity which is pursued

below.

Summary. The following conclusions can be made on the basis of the

review so far:
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1. Complexity is related to the size of the system as well as the

level of redundancy (or connectivity) among components.

2. The effects of redundancy on complexity differ depending upon

one's perspective. A highly redundant system may lead to better

overall performance; however, it may also lead to increased

human problem solving difficulty.

3. Complexity can only be measured relative to a person's

understanding of the system.

Behavioral complexity

The preceding discussion has made only oblique reference to human

abilities in perceiving information about the system or in solving

problems within the environment created by the system. From a

psychological perspective, the relationship between complexity and human

performance is of fundamental importance. This relationship is explored

in the following sections. Perceptual complexity is considered first,

followed by problem solving complexity.

Perceptual complexity. Rouse and Rouse [12] describe studies of

perceptual complexity as dealing with "... the human's ability to

recognize, rotate, reverse, etc. displayed patterns as a function of

various attributes of the pattern, including number of line segments,

symmetry, etc." This form of complexity has typically been investigated

via some simple experimental scenarios. Greenberg and Krueger [36], for

example, use a letter searching task to examine the relationship between

task difficulty (in terms of letter orientation and redundancy) and speed

of search. Other studies examine such aspects of complexity as color
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[37], stress and its relation to a visual discrimination task [38], and

relations between visual complexity and verbal associative value 139].

Hochberg and Brooks [40] derive a complexity measure based on the

number of angles, number of lines, and the variety of angles contained

within a drawing. Vitz and Todd [41] also propose a complexity metric of

non-representational shapes based on a sampling of elements in the

drawing. Butler [42] extends this work by using a complexity measure

based on information load and the number of lines in the drawing.

Attneave [43] develops a complexity measure based on the physical

characteristics of shapes. Kimchi and Palmer 144] relate the number of

elements in a drawing and its size to subjects' similarity judgements and

their verbal descriptions. Finally, Simon [451 reviews several different

approaches to relating the perceptual complexity of patterned sequences

of symbols to human behavior. Simon concludes that all of the theories

share a common central core: subjects perform the tasks by inducing

pattern descriptions from the sequences. These descriptions all involve

the same rules between symbols, iteration of subpatterns, and a

hierarchic phrase structure.

Relative to the role perception plays in the complexity of fault

diagnosis tasks, Rouse and Rouse [12], in their study of complexity

measures of fault diagnosis tasks, use the number of displayed components

as a measure of perceptual complexity. Results indicate that this

measure is not a good predictor of fault diagnosis performance.

Since the number of components displayed on the screen is a function of

the equipment's inherent complexity, not peculiarities of the display,

the authors advise that a systematic variation of display characteristics

might indicate that fault diagnosis tasks can be perceptually complex.
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In light of the success of other predictors which are more related to

problem solving complexity that are discussed in the next section, the

authors suggest that problem solving measures are more relevant to fault

diagnosis tasks.

Brooke and Duncan [46] extend the work of Rouse and Rouse [121 to

examine explicitly the effect of display formatting on measures of the

fault diagnosis process. Results indicate that changing some of the

perceptual characteristics of the display improves the speed and

diagnostic efficiency with which faults are located.

Problem solving complexity. A second form of behavioral complexity,

which has received less attention than perceptual complexity, is problem

solving complexity. This type of complexity measure assesses various

problem attributes and attempts to relate them to human reasoning

abilities and problem solving skills. Experimental assessments of

problem solving complexity typically use syntactic or arithmetic problem

solving tasks. Glover et al. [47], using a written learning task, finds

that more difficult tasks result in higher levels of recall. McDaniel

[48] reports that syntactically complicated sentences result in greater

recall of sentence structure than do simple sentences. Ashcraft and

Stazyk [491, using mental arithmetic tasks, discover that reaction time

increases with increasing problem complexity. Loftus and Suppes [50]

find that problem solving difficulty of arithmetic word problems is

related to problem 'attributes like surface structure, number of words,

and the number of different operations required to obtain a solution.

Morgan and Alluisi [51], using a code transformation task, find that

problem complexity has a greater effect on performance after practice

than the early trials.
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Kieras and Poison [52] discuss "user complexity," which is the

complexity of a device or system from the point of view of the user. The

authors propose that user complexity depends on the "amount, content, and

structure of knowledge required to operate a device." In addition, the

complexity for a novice increases as a function of the difficulty of

acquiring that knowledge. Knowledge is composed of two components,

task knowledge and device knowledge. Complexity, therefore, is dependent

not only on device or task characteristics, but also on the knowledge of

the user. In order to measure complexity, the authors suggest the

following indices: number of productions (rules) to be learned, number

of productions fired, number of keystrokes, number of items in working

memory, etc. The authors propose that these measures of user complexity

can be determined by using a computer simulation to implement a user

model.

With respect to measures of problem solving complexity in

man-machine systems, the most pertinent work is that of Rouse and Rouse

(12]. Besides their measures of number of components and optimal

solution which have already been discussed, Rouse and Rouse also propose

two measures of problem solving complexity: the number of relevant

relationships (i.e., number of possible causes of a set of symptoms) and

an information theoretic approach. These two measures are highly

correlated with human performance in the fault diagnosis tasks (as

measured by time to solution). The authors suggest that the success of

these measures can be largely explained by the fact that they reflect the

human's understanding of the problem and his resulting solution strategy.

Wohl [53,54,55] examines the relation between the structure of

electronic equipment and human fault diagnosis performance. He derives a
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measure of complexity based on system connectivity which is shown to

predict repair times very well. Wohl relates this measure to human

cognitive limitations. He suggests that if some upper bound of

complexity is reached (namely, human short term memory limits), some

fraction of equipment failures will be non-diagnosable. Existing

equipment does not exceed these human cognitive limits since designers as

well as diagnosticians possess the same limits. However, these results

have rather important implications for computer-aided design, which could

allow the creation of overly connected parts. It should be noted that

although this measure is related to the Rouse and Rouse measures of

complexity, it differs because it reflects mostly characteristics of the

system rather than characteristics of the human.

Summary. The following conclusions can be made on the basis of the

review of the behavioral complexity literature.

1. Measures of problem solving complexity appear to be most

relevant to the task of failure diagnosis, although perceptual

complexity may play some part in affecting task difficulty.

2. Complexity is caused not only by the attributes of the problem

solving environment, but also by the human's understanding or

perception of those attributes.

3. Little work has assessed the complexity of problem solving in

large-scale man-machine systems.

Implications of complexity

It is reasonable to assume that complexity should manifest itself in

some measurable way; i.e., a complex system should result in longer times

to failure diagnosis, longer reaction times, etc. In order to validate a
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complexity measure, it is important to identify correctly and to justify

an appropriate dependent measure.

A survey was made of 19 behaviorally oriented studies of complexity

reviewed in this section. The most popular dependent measure (eight) was

reaction time or time to problem solution. Other dependent measures were

solution success, recall of sentence structure, memory of forms, and

dimensionality judgements of figures. Three studies used number of

errors as the dependent measure. Few of the studies, however, (other

than Rouse and Rouse [12]) offer any rationale for their choice of a

dependent measure.

Conclusions

The preceding sections have considered definitions, measures, and

implications of complexity within a variety of domains. On the basis of

this review, it is instructive to make some generalizations.

Host studies of complexity performed by systems scientists are on a

general level. Although much work has gone into defining and measuring

system complexity, little has been done to assess the implications of

complexity. Furthermore, assuming that humans must play an important

role in many large scale systems (e.g., failure diagnosis and network

management), little research has investigated the relationship between

large scale system complexity and human performance. Due to the strong

theoretical flavor of this approach, it is often difficult to see its

application to real world systems.

On the other hand, studies of complexity performed by behavioral

scientists are on a very applied level. Although the approach often

lacks the theoretical rigor of the systems approach, complexity is always
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related to some aspect of human performance. Unfortunately, differences

between tasks and complexity measures make it difficult to generalize

results across contexts. Moreover, the small, well-defined nature of the

tasks seems to have little relation to human performance in large scale

systems.

The remainder of this paper is devoted to consideration of human

performance in monitoring and controlling large scale systems. Thus, the

research attempts to integrate a number of the issues raised in this

section concerning the nature of complexity. Complexity is viewed as

being a result of both the structure of the system and the human

operator's understanding of the system. Complexity is also considered in

terms of its relation to both system performance and human performance.

In particular, the relationship between such structural variables as

redundancy and number of levels and performance is investigated. In

summary, the goal of this work is to "bridge the gap" between systems

science and behavioral science and, in the process, gain practical

insights into appropriate roles for humans in the increasingly complex

systems that technology is producing.

TASK DESCRIPTION

A previous experiment [2,56] considered human performance in the

monitoring and control of an essentially context-free representation of a

large scale system. Subjects monitored and controlled a computer

simulated large scale system called MABEL (Monitoring, Accessing,

Browsing, and Evaluating Limits), trying to optimize such system

parameters as number of customers served and customer processing time

while trying to diagnose system failures. As noted in the Background
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section, of interest is the assessment of measures of task complexity;

i.e., what features of the physical system, the human-system interface,

or the human's understanding of the system make the monitoring and

control task difficult? A major goal of this paper is to consider the

nature of complexity in a large scale system.

The remainder of this section describes a contextually augmented

version of MABEL that contains substantially higher fidelity than the

earlier simulation. An experiment is then described, from which data are

analyzed using the same set of performance measures as were applied to

the experiment reported in Henneman and Rouse [2]. Data are then

analyzed from the standpoint of assessing task complexity.

Overview of CAIN

Certain features of MABEL were substantially changed to develop CAIN

(Contextually Augmented Integrated Network); however, the underlying

structure of CAIN is identical to that of MABEL. This section summarizes

the similarities between the context-free MABEL and the contextually-

augmented CAIN. The summary is only a very broad overview; the reader is

referred to Henneman and Rouse 12] or Henneman [56] for much more detail

concerning the underlying structure of the two simulations.

CAIN is programmed in Pascal on a VAX 11/780 computer and operates

in real time. It is structured as a large hierarchical network that can

range in size from hundreds to thousands of nodes. Customers travel

through the system from a randomly selected source node to a random

destination. Subjects monitor this system activity via a CRT display.

When they detect a problem in the system (possibly due to a failure),

subjects issue an appropriate command through a keyboard to correct and
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compensate for the abnormal situation. The overall objectives of the

operator are:

1) to maximize the number of customers served, and

2) to minimize the time it takes for customers to travel between

source and destination nodes.

Because there are so many nodes in the network, it is not possible

to display information about all nodes at one time. Thus, nodes are

grouped into relatively small networks called clusters. Human operators

are restricted to viewing only one cluster at a time on the CAIN display.

Clusters are grouped into hierarchic levels.

Effects of Node Failures

Under normal circumstances, CAIN operates automatically without

interference from the human operator. Since the system cannot

automatically diagnose and repair failures, the human must monitor the

system looking for evidence of failed components. Node failures can

occur in two ways. The first is a randomly occuring failure mode caused

by malfunctioning equipment. The second type, capacity failure, can be

caused by the randomly occuring failures. Each node has a maximum number

of customers that it can store at one time. If this limit is exceeded,

the node fails. Thus, if a node fails randomly and a customer needs to

visit that node, it will be retained at its previous node. This

retention will cause the previous node to stop processing customers,

which can lead to a capacity failure. In this way, if the operator does

not quickly locate failures, the problems will propagate through the

system.
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Addition of Context

Although the physical hierarchical structure of MABEL was preserved,

the addition of contextual information to CAIN required changing some

interface characteristics. In the MABEL scenario, for example, all nodes

on a display page are identified by a number on the CRT display. Each

displayed node in a cluster, therefore, is physically identical to nodes

in other clusters. The MABEL interface has a generic quality in that all

subsystems are visually similar; no contextual cues exist. On the other

hand, nodes in CAIN are identified via specific geographic locations.

Thus, a node in MABEL with the label "9" might be labelled "Chicago" in

CAIN. A typical CAIN display is shown in Figure 1.

Simply introducing geographic names as node labels is not enough,

however, to alter subject task performance. A small experiment (n-3)

replicated the first MABEL experiment 12,56], with the exception that

nodes were given geographic names. Subjects still referred to nodes by

number only; contextual labels were present but not needed to perform the

task. No significant difference was found in terms of performance

between subjects using the two task scenarios. This result suggests that

the addition of context must be such that it provides associative links

(i.e., memory aids) or cues (i.e., clues to the location of problems

within the system) through which subject performance is enhanced or task

difficulty is decreased.

Associative Links. The formation of associative links in CAIN is

facilitated by the way in which a subject identifies a node. In CAIN,

nodes are referred to by geographic labels only, never by number.

Subjects may input the shortest string of characters that uniquely
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identifies the node from all other nodes in the system. Thus, "Denver"

may be abbreviated "den". Most nodes can be identified with a three or

four character substring of the complete name. In addition, the number

of elements on a display page is kept constant at 16 so that the

contextual information is invariant.

To illustrate the effect this change has on the subject's task,

consider the command that displays a lower level cluster. In MABEL, the

subject inputs the command d2", which displays the cluster beneath Node

2. In CAIN, on the other hand, the subject types "dSanf", which displays

the cities beneath San Francisco (e.g., Berkeley, San Jose). Thus,

subjects can form associations or links between system parts due to the

existence of contextual information.

Subjects can use these learned associative links to maneuver through

the CAIN display hierarchy. In MABEL, movement between display pages is

constrained to the cluster of nodes immediately above or below the

current display. Thus, it is not possible to jump laterally across the

network. In CAIN, however, it is possible to move from one part of the

system to any other part. For example, if a subject recalls that the

cluster associated with Bangor, ME was previously experiencing problems,

it is relatively easy to call up that cluster display. This is done by

using a "find" command ("f"). In addition, subjects can return

immediately to the highest level in the system by inputting the "a"

command. (A complete list of commands available for use in CAIN may be

found in Table I. This command list is categorized by function: access,

monitor, diagnose, or control.)

Cues. The formation of cues in CAIN is provided by the introduction

of context-dependent events. These events are of one of two types:
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recurring failures and non-uniform loading. Although equipment in nodes

fails randomly, some equipment experiences a higher probability of

failure. For example, a thunderstorm in Little Rock, AR may make

equipment in that city susceptible to lightning damage. Similarly, given

that incidents of vandalism are more likely to occur in Newark, NJ than

in Council Bluffs, IA, there is a greater chance of equipment damage in

Newark. Therefore, equipment in certain cities exhibits a greater

tendency to fail than in other cities. Subjects are informed of these

locations via warning alarms that appear on the bottom of the display.

Subjects can directly monitor activities within these trouble spots via a

special "watch" ("w") command. Subjects acknowledge the alarms by

inputting an "erase" command ("e"). Subjects add and delete trouble

areas from the watch list by using "+" and "-" commands.

Besides recurring failures, another type of context-dependent event

present in CAIN is non-uniform loading. At different times, certain

sections of the system may be prone to experience heavy loading. For

example, certain times of day are busier in one part of the country than

in others. Similarly, a major political or sports event in one section

of the country may increase the number of messages sent. As with the

recurring failures, subjects are told the location of these increased

loads via a message at the bottom of the screen. Subjects can reduce the

number of customers admitted to the overloaded subsystem by means of the

"load" ("1") command.

In summary, despite the structural isomorphism of the two

simulations, CAIN represents a significant departure from the

context-free scenario of MABEL. Through the addition of contextual

detail and the addition of events that are dependent upon this contextual
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information, the simulation fidelity has been increased

significantly.

MEASURES OF COMPLEXITY

The Background section considered complexity from non-behavioral

and behavioral perspectives. When assessing the complexity of an

operator's task in monitoring and controlling a large scale system, both

approaches should be taken into account. In this paper, therefore, the

complexity of a large scale system is described in terms of: 1) the

physical structure of the system and, 2) the operator's understanding of

the system as reflected by his strategy. From this perspective, a system

that is complex or difficult to control for one operator may be

relatively easy to control for another operator. Similarly, the

complexity of a system may vary with time for any particular operator.

Some systems, however, may be complex regardless of any particular

control strategy due to their inherent structural complexity. The

following paragraphs propose two measures of complexity that incorporate

these ideas. Structural complexity is considered first, followed by

strategic complexity.

Structural Complexity

A one-to-one relationship exists between the hypothetical physical

structure of CAIN and the actual structure of the display page hierarchy.

Since the main control task in CAIN is to locate failures, a measure of

structural complexity should assess the difficulty of finding failures

given the physical arrangement of the system. A major constraint placed

on an operator's ability to locate failures is the hierarchical display

structure; thus, it seems reasonable to assert that structural complexity
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can be estimated by calculating the total number of display pages the

operator must view in order to repair all system failures. Assuming that

the operator knows the location of all failures, this measure represents

the minimum number of pages necessary to locate all system failures.

Thus, the structural complexity measure represents optimal performance

given the constraints of the structure or arrangement of the system

components. Operator performance affects this measure only in that any

particular operator may have more or fewer failures depending upon his

fault finding ability.

To illustrate how this measure is calculated, consider the system

in Figure 2. This hypothetical system contains four nodes per display

page and has three levels. Each group of four rectangles represents a

cluster of nodes (i.e., one display page). For clarity, only those

clusters of nodes that enter into the complexity calculation are shown.

The darkened rectangles represent nodes that have failed. In this

example, three failures exist within the system: two on the second level

and one on the third level.

The structural complexity measure is determined by counting the

number of display pages that must be viewed in order to find all

failures. The counting method assumes a strategy based on tracing higher

level symptoms to their causes in the lower levels. (Context-specific

cues might, of course, allow operators to locate failures in fewer

pages.) Thus, the counting method assumes that after locating all

failures along one subsystem branch, the subject returns to the highest

system level to search the next branch (a depth-first strategy). Figure

2 is self-explanatory; to repair all three failures in the system, an

operator must view at least six display pages. The final return to the

.~ ~. 1... . .. ... . . . ..... • . . . .
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top system level is not counted into the measure because it would simply

add 1 to all estimates.

Strategic Complexity

The strategic complexity measure explicitly considers operator

performance. When an operator is deciding which path through the system

is most likely to lead to finding a failure, he makes a tradeoff between

his uncertainty concerning the state (i.e., queue lengths) of a subsystem

display page and his expectations of finding a failure in that subsystem.

High uncertainty about a subsystem may be acceptable, for example, if a

relatively low probability exists of finding a failure on that display

page. On the other hand, high subsystem uncertainty may be unacceptable

if a very high probability exists of finding a failure. These

observations suggest that an appropriate measure of strategic complexity

that reflects the trade-off between state uncertainty and probability of

failure is the multiplication of these two metrics.

State uncertainty (U) is defined as the real time elapsed since a

particular display page was last tested for failures. Probability of

failure is defined as the probability that a failure exists within a

cluster given the state of the display (p[FIX]). For example, when a

subject views a particular display page, features of that display provide

information about the existence of failures in other subsystems (e.g., a

large queue size suggests a lower level failure.) Experimental data

files were replayed in order to estimate these probabilities empirically.

These probabilities were determined by dividing the frequency with which

a display state reflected a failure by the frequency with which a

particular display state was viewed by an operator. Sets of
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probabilities were calculated for different system coufigurations (2 vs.

3 levels and high vs. low redundancy), and different loading rates (e.g.,

a system with a low loading rate has fewer customers in service, and

hence, lower queue sizes will reflect failures).

The measure of strategic complexity multiplies these two measures

(state uncertainty and probability of failure given the system state) and

sums the product across all clusters in the system:

Strategic Complexity = E U(i) x p[FIX(i)]
i

where U(i) = time since last accessing display page i

X(i) - State of page i reflected by display one level higher

p[F!X(i)] - probability of failure given state i

and F denotes "failure"

When a subject descended to a lower level, the p[FIX(i)] remained fixed

for the previous level. When a subject returned to the higher level, the

p[F(X(i)] values associated with the just-visited lower level cluster

were set to zero. Thus, when an operator descended to a lower level

subsystem and tested for failures, the strategic complexity measure was

simultaneously increased by the "new" uncertainty present in the other

lower-level subsystems and decreased by the certainty now associated with

the current level.

To illustrate how the strategic complexity measure is detcrmincd,

consider the display in Figure 3. This system contains four nodes per

display page and has two levels. The operator is viewing the highest
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level page in the display hierarchy and is monitoring activity in the

next level of the system. The operator can gather information about

activity in the second level of the system from two sources in this

example: the cluster display and the data displayed via the monitor

command. The monitor command lists the number of customers in the

clusters one level below; the cluster display shows the number of

customers waiting at all nodes in the current cluster.

Each of these pieces of information reflects the probability that a

failure has occurred in a lower level cluster. These probabilities

(which are plausible, but hypothetical) are listed in Table 2. -or

example, the queue size of 15 in Denver reflects a relatively high

probability (0.75) that a failure exists in Level Two. Similarly, the

monitor command reports that eight customers are currently in the cluster

beneath Denver; these eight customers reflect a 0.60 probability that a

failure exists. The operator has not tested the cluster beneath Denver

for failures for U(Denver) - 20.12 seconds. Using the information that

reflects the highest probability of failure (i.e., from the cluster

display) results in the following measure of strategic complexity for the

Denver region:

U(Denver x p[Fix(Denver)] = 20.12 x 0.75

- 15.09s

This procedure is then repeated for the other clusters in the network and

the measures are added together. In this way, the total strategic

complexity is determined to be 15.61.
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In this example, it should be noted that Denver makes a very large

contribution to the strategic complexity measure as a result of two

factors: first, the operator has a high degree of uncertainty concerning

the Denver subsystem in that he has not tested that cluster for failures

in 20.12s. Second, the display reflects a very high probability (0.75)

that a failure exists in the Denver subsystem. The combination of these

two factors leads to a very high measure of strategic complexity for the

Denver subsystem. On the other hand, the other subsystems have either a

low uncertainty measure or a low probability of failure. Thus, their

contribution to strategic complexity is small.

Finally, it is instructive to consider the extent to which an

operator may "optimally" reduce strategic complexity. Since the measure

is based on time, it will continually increase unless either the operator

performs some action or the state of the system shifts. At any instant

in time, therefore, it is possible for an operator to reduce strategic

complexity optimally by viewing the display page that reduces the measure

by the largest amount (i.e., the cluster with the largest U x P[FIX ]

value). In the long run, however, the measure may only be optimally

reduced given the operator's performance constraints (i.e., psychomotor

reaction and movement times). In other words, since the measure will in

general keep increasing with time, optimal performance will always be

limited by how long it takes the operator to physically select the next

display page.

Dependent Measure of Complexity

The literature review also suggested that an appropriate dependent

measure of complexity is the time until failure diagnosis. In the
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context of CAIN, this measure is the average time until the subject

issues a repair command for a failed node. Since the two independent

complexity measures vary with time, it was necessary to use a dependent

measure that also changes with time. Average time, therefore, includes

the diagnosis time for the current repair plus diagnosis times for the

four previous repairs.

Summary of Complexity Measures

To summarize, the structural measure reflects an inherent

characteristic of the network, namely the number of display pages

necessary to find all of the failures in the system. The strategic

measure, on the other hand, reflects temporal aspects of subjects'

strategies, i.e., subjects' paths through the network. From this

perspective, the strategic measure reflects the complexity resulting from

a particular strategy.

Although the two complexity measures proposed here may have some

general applicability (in particular, the measure of strategic complexity

is appealing due to its temporal nature), it is not the intent of this

paper to suggest or prove that these measures are true indices of task

complexity. The goal instead is to show in a pragmatic sense that these

two dimensions represent a useful distinction relative to task

complexity. These measures represent a convenient means to demonstrate

this distinction.
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METHOD

Motivation

The main goal of this experiment was to investigate the nature of

complexity in a large scale human-machine system. As emphasized in the

preceding section, the general assumption is made that task complexity

can only be measured relative to an individual's understanding of the

system and his expertise in dealing with problems in that system. Thus,

complexity is considered to be dynamic, varying across time and among

subjects. Accordingly, as discussed below, subjects were required to

perform the task (CAIN) over a relatively long period of time.

Subjects

Eight junior and senior engineering majors at Georgia Tech served as

subjects in this experiment. Due to the nature of the task, potential

subjects were screened via a typing test (minimum ability level was 25

words/minute). Subjects were paid a total of $65: $5.00 for each

training session (3) and each experimental session (10).

Training

Subjects were trained via a combination of written instructions and

hands-on experience with CAIN. Subjects initially were given two sets of

written instruction on consecutive days explaining the system, the goals

of their task, and methods for achieving these goals. Self-test

questions were contained within the text to ins-re mastery of the

material. The experimenter reviewed this material with subjects at the

beginning of each training session. In addition, subjects were given

one-page summaries detailing the structure of the system, available

commands (Table 1), and operation of the system.
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Subjects completed the first two training sessions by controlling a

two-level CAIN system. The third training session was spent controlling

a three-level CAIN system. These sessions were performed using a version

of CAIN that allowed subjects to start and stop the program execution.

Thus, subjects could investigate normal and abnormal system functions

without being overwhelmed by the progressive effects of failures. The

experimenter was present during all training sessions to answer

questions.

Experimental Design

Henneman and Rouse [2] reported that cluster size (number of nodes

per display page) in MABEL had a particularly strong effect on task

performance. Results suggested that small clusters degraded performance

because fewer connections existed between nodes; less redundancy caused

failures to propagate more quickly. Another result from Henneman and

Rouse [21 showed the very strong effect of number of hierarchical system

levels on human performance. Increasing the number of levels from two to

three degraded performance. Thus, two independent variables selected for

further analysis were the degree of redundancy (or connectivity) and the

number of levels in the system. (Cluster size was kept constant at 16 as

mentioned previously in order to emphasize the non-varying features of

the contextual display.) Redundancy or connectivity was defined as the

number of connections emanating from each node. Redundancy varied

between low (6 connections/node) and high (13 connections/node) and

number of levels varied between two and three.

Of interest in this experiment was the way in which complexity

changes as subjects gain expertise. Thus, the order of presentation of

experimental conditions was not randomized. All subjects saw the same
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experimental conditions in the same order. A final independent variable,

therefore, was the order of presentation of experimental conditions.

In summary, the ten experimental sessions (Si - S10) were performed

in the following order (with the intent of increasing experimental

difficulty): 51,52: 2 levels, high redundancy; S3,S4,S5: 3 levels,

high redundancy; S6,S7: 2 levels, low redundancy; S8,S9,SlO: 3 levels,

low redundancy. Each experimental session was performed on consecutive

days and lasted about 45 minutes.

RESULTS

Summary of Approach

Data from this experiment were first analyzed using the same

performance measures as the experiment reported in Henneman and Rouse

[2]. Overall results from the analysis of variance supported those of

the earlier experiment. In light of this similarity, these general

results are only briefly summarized below. Considerably more detail may

be found in Henneman [561.

Measures of fault diagnosis performance were affected as expected by

the independent variables. Increasing the number of system levels from

two to three corresponded to a higher average time to failure diagnosis.

This result was largely because failures take longer to propagate upwards

in the 3-level systems. In addition, failure-related symptoms take

longer to emerge in highly interconnected networks; thus, the high

redundancy systems resulted in longer average dimes to diagnosis.

The fraction of failures repaired by subjects was also significantly

affected by increasing the number of levels: as the number of levels

increased from two to three, the fraction of failures found decreased
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from 0.95 to 0.69. As in Henneman and Rouse [2], subjects could not cope

with the very large search space in the three level systems.

Data were also analyzed with the purpose of investigating

relationships between the complexity measures, the CAIN environment and

operator performance. This investigation was accomplished in two ways.

First, an analysis was undertaken of average or global measures of

complexity (i.e., the complexity time series averaged over each

experimental run). The effect of the experimental independent variables

(number of levels and degree of interconnectivity between nodes) on the

average complexity measures was determined by using analysis of variance.

The relationship between the average complexity measures and measures of

subject fault diagnosis performance was then assessed by using

correlation analysis. As is discussed below, this analysis of average

complexity values provided explanations for differences that exist

between different system configurations.

The second way in which complexity was investigated involved using a

fine-grained approach, namely, time series analysis. Time series

analysis was selected due to the intrinsic time-varying nature of the

independent and dependent complexity measures. As will be seen, this

analysis provided insight into the way in which complexity evolves and

affects different phases of the failure diagnosis process.

Due to the amount of time necessary to perform these analyses, the

results are limited to Sessions 2,5,7, and '0. Data for the analyses were

generated by replaying subject data files. Following every three seconds

(corresponding to the rate of display update), both complexity measures

and the average time until failure diagnosis were calculated. Average

values for all measures were calculated from these time series.
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Analysis of Global Complexity Measures

Analysis of Variance. The results of two ANOVAs (using average

structural and strategic complexity measures as dependent measures and

number of levels and degree of redundancy as independent measures) are

qualitatively summarized in Figure 4. (Henneman [56] reports the results

more fully.) Structural complexity, as measured here, may be decreased

in two ways: 1) decreasing the number of system levels and 2) decreasing

the number of system failures.

The first way (decreasing number of system levels), enables subjects

to access fewer display pages in order to diagnose failures in the lowest

system level. The second way (decreasing number of system failures) is

facilitated by increasing the network redundancy (i.e., increasing the

number of connections between nodes). As network redundancy increases,

the average number of node capacity failures decreases, which has the

effect of decreasing the structural complexity measure.

Strategic complexity, as measured here, may be decreased in three

ways: 1) utilizing an effective strategy in terms of responding to

symptoms, 2) decreasing redundancy, and 3) decreasing number of levels

(which causes symptoms to emerge more rapidly). Subjects tended to trace

failures to the lowest system level only when a symptom (i.e., visual

cue) appeared on the display, even if they had not viewed a particular

region in a large period of time. Consequently, when symptoms emerged

slowly (as in the high redundancy/three level conditions), high

uncertainty resulted. This uncertainty helped to create moderate to high

strategic complexity. On the other hand, symptoms emerged more rapidly

in the low redundancy/two level conditions. Since operators tended to
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respond primarily to visual symptoms, low redundancy led to low values of

strategic complexity.

This dependence on visual cues has implications for the design of

task performance aids. Aids should help people to overcome their

inability or reluctance to reduce system uncertainty despite the absence

of failure symptoms. Alternatively, cues or symptoms could be enhanced

so that operators naturally pursue leads sooner.

In summary, increasing redundancy (or number of connections between

nodes) led to less structural complexity but more strategic complexity.

This result reflects findings from the literature: more redundant

systems (corresponding to less structural complexity) enhance the proper

operation of the system by reducing the impact of failed components. On

the other hand, more redundancy leads to increased strategic complexity

(the complexity of failure diagnosis) due to the slower emergence of

failure symptoms.

In addition, increasing the number of system levels increased both

types of complexity. Again, although multiple system levels might be

desirable in that they allow supervision of larger networks and protect

upper levels from the effects of failures, they have the undesirable side

effect of masking symptoms from operators, thereby increasing the

complexity of failure diagnosis. Multiple displays could possibly be

used to reduce this complexity.

Correlation Analysis. Pearson product-moment correlation

coefficients were calculated between the two average complexity measures

and the two dependent measures (fraction failures diagnosed and average

time to failure diagnosis). Results are qualitatively summarized in this

section; again, Henneman [56] contains more detail. Since significant



33

interaction effects due to the experimental conditions were found, the

analysis was limited to comparisons among correlation coefficients within

each experimental condition. Major differences among coefficients were

only noted when comparing across the number of levels variable. These

results are qualitatively tabulated in Figure 5.

Considering structural complexity first, the measures for both two

and three level systems correlate negatively with the fraction of

failures found (correlations range between -.31 and -.88). Thus, when

many system failures are present on the average (as suggested by a high

structural measure), a smaller fraction of failures are found. With

respect to the structural measure and average time to failure diagnosis,

no significant correlation exists for the two level systems, while high

negative correlations (-.63 and -.70) exist for the three-level systems.

In other words, high structural complexity in the three-level systems led

to shorter failure diagnosis times. This result, being somewhat

counter-intuitive, is caused by the following chain of events. High

structural complexity is caused by a large number of failures, which are

caused, in turn, by a high number of capacity failures. Most capacity

failures are located in the upper system levels where failure diagnosis

times are relatively short.

The correlations associated with the strategic complexity measure

tend to be smaller. Correlations between average strategic complexity

and percent failures diagnosed are negative for two level systems (-.34

and -.49) and positive for three level systems (.25 and .49). In the

two-level conditions, therefore, high strategic complexity led to fewer

diagnosed failures, although in the three level systems, high strategic

complexity led to more diagnosed failures. Results for the two level
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systems are as expected. High values of strategic complexity resulted

from high uncertainty and high conditional failure probabilities.

Apparently subjects who used strategies that tolerated these high values

were not looking at or using the display cues to find failures; thus,

they found few system failures.

Results for the three level systems are less intuitive. Subjects

who found many failures in the three level systems had to spend time

accessing third level subsystems. Because they spent more time in the

third level, these better subjects had to tolerate greater uncertainty

about the rest of the system. This increased uncertainty had the effect

of increasing the strategic complexity measure.

Summary. In summary, the results presented in this section provide

insight to the overall characteristics of the two complexity measures and

their relationship to subject fault diagnosis performance. The measures

are sensitive to variations among the system characteristics of number of

levels and degree of redundancy. In general, the more complex systems

have three rather than two levels. The effect of redundancy on

complexity depends on the type of complexity: low redundancy netuorks

result in more structural complexity; high redundancy networks result in

more strategic complexity.

An important conceptual and methodological issue raised by these

results concerns the multidimensional nature of complexity. In

particular, the relationship between the independent and dependent

measures of complexity is of interest. When'many failures exist in a

system, the general tendency is for the complexity measures to increase.

At the same time, however, the average time to failure diagnosis
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decreases. Thus, even though complexity may be large, failure diagnosis

time may be small.

This observation emphasizes the distinction mentioned previously

between proper system functioning and the complexity of failure

diagnosis. In a localized sense, control in a complex system is simple:

no matter what the operator does, he will find a problem. This is

reflected by short diagnosis times. In a global sense, however, control

in a complex system is complex: so many problems exist in the system

that proper operation is endangered. This is reflected by a low fraction

of failures found. The operator, dealing with only a small part of the

system at one time, may be oblivious to the scope of problems in the

network. Another important issue is, therefore, the impact of a richly

interconnected, multiple-level system (that supports proper system

functioning) on the complexity of human monitoring and control (that will

degrade failure diagnosis performance).

Analysis of Fine-Grained Complexity Measures

Time Series Analysis. Time series analysis was used to identify,

estimate, and diagnostically check transfer functions that relate the two

input complexity measures to the average time to failure diagnosis. The

general approach is discussed by Box and Jenkins [57]. Each transfer

function model predicts the current average time to failure diagnosis

through a linear combination of the complexity measures at various time

lags. The essence of the modeling process is to determine the time lags

to include in the model and the weight or telative contribution of each

time lagged variable to the predicted value. Montgomery and Weatherby

[58] provide a good tutorial on multiple input transfer function models.
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Transfer functions for each subject were developed for Sessions

2,5,7, and 10. (Due to space considerations, these functions are not

shown here; the reader is referred to Henneman [56] for more detail.)

Overall, the approach was successful. The equations remove all structure

from the autocorrelation function of the model residuals. Furthermore, a

comparison of the sum of squares of the original dependent time series

(i.e., average time to failure diagnosis) to the sum of squares of the

residuals shows that the transfer functions explain 82% to 97% of the

variance within the original data. Nevertheless, wide differences in the

lag and coefficient values in the models exist among both subjects and

systems.

The remainder of this section is devoted to the development of a

consistent explanation for these differences. The goal is not to account

fully for each parameter, lag value, and coefficient in the transfer

functions. Instead, the goal is to suggest a plausible explanation for

the transfer function characteristics and to suggest reasons for

deviations from this explanation.

Explanation for Transfer Functions. The initial step was to

identify characteristics of the task, the system, or the human that could

explain differences among transfer functions (e.g., long lags and

inconsistency of numerical signs). For example, several different events

are associated with the life cycle of each system failure: failure

occurrence, symptom emergence, and failure diagnosis. Failure occurrence

is defined as the time when a part of the gystem fails; symptom emergence

is defined as the time a failure first affects any node that appears on

the subject's video display; failure diagnosis is defined as the time a

subject issues a repair command for a failed component. The timing of
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these events undoubtedly has some effect on the length of time needed to

find the failure. Moreover, the system complexity at these event times

might also affect failure diagnosis time.

Besides the possibility that different events associated with the

failure life-cycle impact diagnosis time, it is also reasonable that

different types of diagnosis might affect failure diagnosis time. The

diagnosis of any particular failure may be classified into one of three

types: topographic, symptomatic, or serendipitous. Subjects identifying

failures using a topographic strategy trace failure symptoms from higher

system levels to their causes in lower levels. Subjects identifying

failures using a symptomatic strategy make a direct mapping from their

knowledge of the system structure to the failed component. A symptomatic

diagnosis relies, therefore, on the subject's contextual knowledge of the

system. For example, when subjects make a jump from one cluster to

another cluster in the same level to repair a failure, their action

suggests that their context-specific knowledge of the system is providing

guidance to system trouble areas. Finally, subjects may also identify

failures accidentally or serendipitously. In this diagnosis mode,

subjects locate failures while browsing through the system or while

tracing the cause of a different failure.

In summary, it is possible that several different types of

failure-related event (e.g., failure occurrence and symptom emergence)

and several different modes of failure diagnosis (e.g., symptomatic,

topographic, and serendipitous) can affect the time to failure diagnosis

within a system. In addition, due to the aforementioned aggregation of

five failure diagnosis times for the dependent complexity measure, it is

possible for many lags (possibly quite long) to enter into the transfer
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functions. From the perspective offered in the preceding paragraphs,

therefore, the transfer functions relating the two complexity measures to

failure diagnosis time are affected not only by system characteristics

and individual differences; rather, the equations are also affected by

types of failure-related event, modes of failure diagnosis, and the way

in which diagnosis times were aggregated. In the next section, these

factors are considered analytically and compared with the transfer

functions.

Empirical Analysis. Given the preceding discussion, subject data

files were replayedI in order to gather failure-related event

information. When a subject repaired a failure, it was classified as

being topographic, symptomatic, or serendipitous by using the following

heuristics. A failure diagnosis was classified as topographic if the

failure was affecting the last higher display page viewed by the subject;

the assumption was made that the subject was tracing the cause of

symptoms via the physical structure of the system. A diagnosis was

classified as symptomatic if the subject jumped more than one level in

the display hierarchy, if the subject jumped laterally on the same level,

or if the subject diagnosed the failure on the basis of contextual

messages. All of these instances suggested that the subject was using

contextual knowledge of the system to recall the likely location of

failures. Finally, a diagnosis was classified as serendipitous if no

1The comparisons made in this section are limited to data from Session 2.
Since the major goal is to show how the results that did arise are
explainable, the explanation can be accomplished by examining only a
subset of all the data.
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symptoms existed on the previous level and for the second, third, etc.

failures diagnosed on a single display page.

Failure occurrence and symptom emergence times were also determined.

This information was collected for each diagnosis mode (i.e.,

topographic, symptomatic, and serendipitous) and also aggregated across

all diagnosis modes. Using these data, the average time from each event

type to the time of diagnosis was calculated. A comparison of these

average times to the transfer functions lag values for Session 2 may be

found in Table 3. Table 3 may be interpreted as follows. For each

subject (1-8) the total number of failures repaired for each diagnosis

mode are listed along with the fraction of the total for each mode. The

top row in each pair of boxed numbers corresponds to average event times

that are approximately equal to lag values from the transfer functions.

The lower row in each box contains information about the corresponding

transfer function variable. The + or - represents the numerical sign of

the transfer function coefficient, "struct" or "strat" refers to the type

of complexity, and the final number is the time lag value.

Table 4 presents some of the information in Table 3 in a slightly

different form, listing only the empirical average time values paired

with transfer function lag values. As Table 4 clearly shows, a very high

degree of correlation exists between the time values and the lag values

(r = 0.92, p < 0.01).

Several patterns are evident in Table 3. First, of the eight

subjects, seven have transfer function lags that are approximately less

than or equal to the overall average time to failure diagnosis (all

except Subject 8). Four of these lags involve a strategic complexity

component (Subjects 2, 4, 5, and 7), and four involve a structural

.. , ,MI
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component (Subjects 1, 3, 6, and 7 - Subject 7 has both).

Furthermore, the numerical sign of the transfer function coefficient in

each case is positive. In each case, therefore, the strategic complexity

measure is related positively to the predicted failure diagnosis time.

This finding is intuitively plausible. The measure of strategic

complexity reflects the trade-off between the subject's system state

uncertainty and the probability of failu-es existing within the system.

If this measure is at a relatively high level when a failure occurs, the

time needed to find that failure will be increased due to the number or

severity of potential problem areas within the system. A high measure of

strategic complexity suggests that many subsystems (clusters) have

potential problems and thus, require the attention of the operator. The

time necessary to observe these clusters has the cumulative effect of

increasing time to failure diagnosis.

Similarly, the measure of structural complexity estimates the

minimum number of pages that the subject would have to view in order to

find all system failures. On the average, the time needed to locate any

one failure in the system will increase as this measure increases.

A second pattern that exists within these results is the similarity

between the average time from symptom emergence and the lag values

associated with a negative structural complexity component (Subjects 2,

3, 4, 6, and 8). After a symptom emerges, therefore, the structural

complexity measure decreases the predicted time to failure diagnosis:

the greater the structural complexity of tiLe system, the less time it

takes to locate failures. This counter-intuitive result may be explained

as follows: as system structural complexity increases, more failures

exist within the system. As the number of failures in the system
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increases, it is likely that a subject will locate some failures rather

quickly.

This observation reflects the relation between fault diagnosis time

and number of failures in the system. As the number of failures in the

system increases, one might expect the time to diagnosis for some

failures also to increase. On the other hand, as the number of failures

in the system increases, the chances of finding some failures fairly soon

is relatively high. Thus, once a symptom emerges, the average time to

failure diagnosis will decrease simply because there are more possible

failures in the system to find.

This conclusion is consistent with the relation between lag values

and the calculated average time between symptom emergence and failure

diagnosis for serendipitous diagnoses. Four of the eight subjects

(Subjects 2, 3, 4, and 8) have a negative structural complexity component

that is related to the symptom emergence for this mode of failure

diagnosis. This increase/decrease effect of complexity, therefore,

appears to be dependent upon both the type of complexity (structural or

strategic) and the type of failure-related event (e.g., failure occurence

or symptom emergence).

In one situation, the measure of structural complexity at the time

of symptom emergence appears to increase failure diagnosis time (Subject

7). It is worthwhile noting that this subject located substantially more

failures than any other subject (97 vs. 75 - the next highest total).

This high number was not due to an effective strategy; rather, the

subject used a poor strategy that resulted in a very high number of

capacity failures -- note the high percent of serendipitous failure

locations relative to the other subjects. Indeed, all of the



42

coefficients in Subject 7's transfer function (Table 4) have positive

coefficients. In short, the subject was unable to overcome the number of

failures in the system, thereby resulting in an increasing time to

failure diagnosis.

So far the discussion has centered on the aggregated mode of failure

diagnosis. Examining the individual modes of failure diagnosis, similar

trends are apparent except in one case: the transfer function associated

with topographic diagnoses have no lag values that correspond to any of

the inter-event times. What characteristic of topographic diagnoses

could cause this lack of association? One possible reason is simply that

there are fewer topographic diagnoses made by subjects; thus, it is less

likely to obtain an accurate measure of the true mean event time and

transfer function lag. Inaccuracy in the measure obscures the nature of

the relationship.

Another possibility is related to the length of time necessary to

find topographic failures: in general, it takes subjects more time to

identify a failure topographically than some other way. (For example,

the average time to failure diagnosis for topographic failures for

Session 2 data is 124.95s; for symptomatic failures, 45.07s; and for

serendipitous failures, 60.03s.) Because of the longer times (note in

particular the time from first symptom emergence to failure diagnosis for

each subject), the complexity measure is not related to the lag values.

Failure diagnosis time in this case is more dependent upon the

probabilistic nature of the queueing network than the skills or

thresholds of individual subjects.

Summary. The preceding discussion indicates that the variables and

lags present in the transfer functions are reasonable, if not entirely
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explainable. The real time values of the lags frequently agree with the

average inter-failure event times calculated from subject data files. A

comparison of these values for Session Two data suggests that certain

recurring patterns of agreement exist between the lags and inter-event

times. These recurring patterns are useful in terms of explaining the

presence of both positive and negative terms in the tronsfer functions.

Differences between time values can probably be accounted for by any of

several reasons, including the high variability present within the data,

the subjective nature of the modelling process, and the existence of

events other than failure occurence or symptom emergence (e.g., diagnosis

time for a particular system level or subsystem) that affect parameters

in the transfer functions.

Results reported in this section demonstrate how two different

dimensions of complexity, structural and strategic, can be related to

human fault diagnosis skills in a large scale system. The exact nature

of the two measures is relatively unimportant beyond a certain degree of

intuitive validity. The importance of these results, however, lies in

the demonstration that the complexity measures are dependent upon the

number of failures in the system and the rate at which their symptoms

emerge. These factors are highly dependent upon both system

characteristics (i.e., number of levels and degree of redundancy) and

subject strategy. Of equal importance is the demonstration that the

complexity measures relate to performance in a time-varying manner, and

the nature of this time-varying manner is highly dependent upon events

that occur within the system and the strategy of individual subjects.
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CONCLUSION

The experiment, results, and conclusions in this paper have

considered the relationship between the design of a large scale system

and human monitoring and control behavior. System characteristics such

as number of levels and degree of interconnectedness can have a very

strong effect on the ability of humans to maintain proper system

operation in the presence of failures. Since normal system operation

tends to be affected in the opposite direction in the presence of the

same design characteristics, system designers must be careful to create

environments that support both system and human performance.

Some rather straightforward measures were used to assess the

complexity of a large scale system as it relates to the task of

monitoring and control. Complexity, as discussed in this paper, is a

dynamic property of a human-machine system. Complexity varies with time

and it varies among operators. Furthermore, complexity is

multi-dimensional; two dimensions of complexity (i.e., structural and

strategic) have been proposed, and it appears that this distinction is

useful, both conceptually and practically. Complexity is not due solely

to the structure of the system, although a system may certainly be

complex due to its structure. Rather, complexity also arises when the

human, trying to solve problems within the system's environment, does not

understand the structure, and, as a result issues an inappropriate

command, misinterprets display information, etc. In short, systems are

also complex due to the human's understanding of the system as reflected

by his strategy.

Another result from this work concerns the outcome of complexity.

Based on a review of the literature and the major control task of

subjects (i.e., finding failures), average time to failure diagnosis was
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used as the major dependent measure of complexity. As results suggest,

however, average time to failure diagnosis alone does not completely

describe the implications of complexity. For example, the most complex

systems resulted in shorter failure diagnosis times due to the number and

location of failures. A smaller fraction of the total number of failures

was diagnosed, however. Thus, fraction failures diagnosed was used to

explain a different aspect of performance related to task complexity. In

short, the result of complexity is multi-dimensional. A single dimension

does not capture the outcome of a complex system.

These comments are important in light of the relationships among

system characteristics that contribute to complexity, proper operation of

the system, and complexity of monitoring and control by the human. As

the system becomes more "complex" (from a non-behaviorist's perspective,

i.e., more levels and more redundancy), it becomes more resistant to the

effects of system failures. Failures take longer to propagate through

the more complex systems. Moreover, the effects of any one failure on

overall system performance are minimized due to the number of alternate

paths through the system. Hence, normal system operation is enhanced.

This situation is analogous to the use of redundant or stand-by equipment

in systems to increase fault tolerance. On the other hand, as the system

becomes more complex, the task of finding system failures becomes more

difficult. Although the system design characteristics can help to avoid

the short term effects of failures, they canhave the dual effect of

making the human supervisory controller's task more difficult.

The relationship between complexity and human performance takes on

increasing importance given the growing prevalence of large scale

systems. Human abilities and limitations in monitoring and controlling



46

these complex systems must be identified in order to design systems that

facilitate good failure diagnosis and network management performance. In

short, systems must be designed such that they do not overload human

information processing capabilities. Beyond the issue of design, an

understanding of human performance constraints should facilitate the

creation of effective performance aids. Such aids can be used to help

people overcome their limitations in coping with the complex environments

these systems create, thereby leading to safe and effective system

performance.
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Table 1 Summary of CAIN commands

ACCESS Commands

dCITY down CITY

u up one level

fCITY find CITY

a return to top level

MONITOR Commands

m monitor

s system statistics

w watch list
+CITY add CITY to watch list

-CITY delete CITY from watch list

o list repair orders

e erase warning message from bottom of screen

DIAGNOSTIC Commands

t tests displayed cluster of nodes

cCITY information about CITY

CONTROL Commands

rCITY replaces equipment in CITY

ICITY=%load alters load in cluster CITY to %load

lsys=%load alters load in entire system

1 displays load
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Table 2 Example calculation of strategic complexity

Cluster U _p[FIXJ U x p[FJX]

uncertainty monitor cluster

Denver 20.12 .600 .750 15.090

Los Angeles 0.54 .100 .015 .054

New York 9.12 .001 .050 .456

Strategic Complexity = 15.607
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Table 3 Summary of average times from failure-related
events to failure diagnosis (Session 2)

All Topographic Symptomatic Serendipitous

Subject 1
Total Failures 58 20 15 23

Frac. of Total 0.35 0.26 0.40

T(Failure) 63.02 81.68 27.47 69.99
+ struct 48.1 + struct 48.1

T(Symptom) 29.65 38.18 14.98 31.81

Subject 2
Total Failures 61 10 18 33
Frac. of Total 0.16 0.30 0.54

T(Failure) 75.85 101.03 47.66 83.59
+ strat 71.1

T(Symptom) 32.29 42.99 24.44 33.33
- struct 22.4 1i f 2.I -jj2.4

Subject 3
Total Failures 66 16 17 33
Frac. of Total 0.24 0.26 0.50

T(Failure) 78.04 180.32 42.52 46.75
+ struct 60.1 - struct 40.1 - struct 40.1

19.57-
T(Symptom) 44.29 97.88 + struct 10 31.03

- struct 40.1 - strat 16.7 - struct 23.4

Subject 4
Total Failures 63 22 19 22
Frac. of Total 0.35 0.30 0.35

T(Failure) 5.078.23 [ 34.06 46.71
+ strat 46.4 + strat 23.2 + strat 46.4

T(Symptom) 31.80 47.56 14.45 31.03
struct 11.6 struct 11.6 struct 11.6
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Subject 5
Total Failures 75 16 23 36

Frac. of Total 0.21 0.31 0.48

T(Failure) 66.93 146.20 50.90 41.93
J+ strat 67:.6]

T(Symptom) 28.47 56.91 19 9 2.2
+ strat 11.6 + strat 11.6

Subject 6
Total Failures 43 16 20 7

Frac. of Total 0.37 0.47 0.16

T(Failure) 64.30 94.48 39.31 66.75

+ struct 66.2

T(Symptom) 31.01 52.16 10.44 41.43

- struct 29.4

Subject 7

Total Failures 97 17 15 65

Frac. of Total 0.18 0.16 0.67

T(Failure) 78.89 143.59 57.35 66.94
+ struct 49.8 + struct 49.8

+ strat 49.8 + strat 49.8

T(Symptom) 45.74 88.15 26.42 39.11

Subject 8
Total Failures 47 12 8 27

Frac. of Total 0.26 0.17 0.57

T(Failure) 103.95 174.07 61.32 85.42

T(Symptom) 6501 116.95 24.69 53.88
- struct 44.2 struct 44.2
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Table 4 Summary of average event times and lag values

Average time lag value Average time lag value
63.0 48.1 19.6 10.0
75.9 71.1 19.6 16.7
32.3 22.4 34.1 23.2
78.0 60.1 14.5 11.6
44.3 40.1 20.0 11.6
53.9 46.4 57.4 49.8
31.8 11.6 70.0 48.1
66.9 67.6 33.3 22.4
64.3 66.2 46.8 40.1
31.0 29.4 31.0 23.4
78.9 49.8 46.7 46.4
65.0 44.2 31.0 11.6
24.4 22.4 21.3 11.6
42.5 40.1 53.9 44.2
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